Jumat, 31 Oktober 2014

MEMORI OPTIK

Definisi Optical Memory

            Optical memory atau optical disk merupakan perangkat keras penyimpan data yang terbuat dari bahan-bahan optik, seperti dari resin (polycarbonate) dan dilapisi permukaan yang sangat reflektif seperti alumunium. Contoh : CD dan DVD.

Teknologi optik yang digunakan adalah penggunaan laser untuk menulis dan mengambil data.

Jenis-jenis Optical Memory

1. Laser Disk (LD) atau cakram laser

            Cakram laser (LD) adalah sebuah piringan optical yang digunakan untuk menyimpan video dan film, dan merupakan media penyimpan data pada cakram optic komersial pertama. Cakram laser awalnya dinamakan Discovision pada tahun 1978, teknologinya dilisensikan dan dijual dengan nama Reflective Optical Video disc, laser Video disk, Laser vision, discovision, dan MCA discovision sampai akhirnya pioneer electronis memiliki sebagian format ini dan akhirnya dinamai Laser Disc pada pertengahan dan akhir 1980-an.

2. CD (CompactDisk)

Cakram Digital (CD), cakram padat, atau piringan cakram adalah sebuah piringan optikal yang digunakan untuk menyimpan data secara digital. Awalnya CD dikembangkan untuk menyimpan audio digital dan diperkenalkan pada tahun 1982, tetapi kemudian juga memungkinkan untuk penyimpanan jenis data lainnya. Audio CD telah tersedia secara komersial sejak Oktober 1982. Pada tahun 2010, CD ditetapkan sebagai media penyimpanan audio standar.

3. CD-ROM (Compact Disk Read Only Memory)

CD-ROM (Compact Disk Read Only Memory) adalah sebuah piringan kompak dari jenis piringan optic (optical disk) yang dapat menyimpan data. Ukuran data yang  dapat disimpan saat ini bisa mencapai 700 MB atau 7 Juta Bit. CD-ROM bersifat read only (hanya dapat dibaca dan tidak dapat ditulisi). Untuk dapat membaca isi CD-ROM, alat utama yang diperlukan adalah CD drive.

Satuan X pada CD ROM drive (pada umumnya) sebenarnya mengacu pada kecepatan baca dari CD tersebut ditrack terluar (jika track terluar terpakai alias CD-nya penuh). Sedangkan kecepatan baca ditrackter dalamnya jauh lebih lambat. Misalkan ada CD-ROM drive48X‘max’,itu berarti kecepatan baca track terluarnya 40x namun untuk track terdalamnya hanya 19x. Yang utama sebenarnya bukan hanya kecepatan putar yang ditingkatkan, namun system pembacaan, route data, mode tansfer, interface, dll.

Baik CD-audio maupun CD-ROM terbuat dari resin (polycarbonate) dan dilapisi permukaan yang sangat reflektif seperti alumunium. Informasi direkam secara digital sebagai lubang-lubang mikroskopis pada permukaan yang reflektif. Proses ini dilakukan degan menggunakan laser yang berintensitas tinggi. Permukaan yang berlubang ini kemudian dilapisi oleh lapisan bening. Informasi dibaca dengan menggunakan laser berintensitas rendah yang menyinari lapisan bening tersebut sementara motor memutar disk. Intensitas laser tersebut berubah setelah mengenai lubang-lubang tersebut kemudian terefleksikan dan dideteksi oleh foto sensor yang kemudian dikonversi menjadi data digital.

4. CD-RW (Compact Disk ReWritable)

CD-RW adalah CD-ROMyang dapat ditulis kembali. CD-RW menggunakan media berukuran sama dengan CD-R tetapi bukan menggunakan bahan pewarna cyanin atau pthalocyanine, CD-RW menggunakan logam perpaduan antara perak, indium, antimon, dan tellurium untuk lapisan perekaman. Cakram CD-RW relative lebih mahal dibandingkan cakram CD-R.

Pada CD-RW, energi laser digunakan secara bersama-sama dengan prinsip medan magnet untuk menulis dan membaca informasi. Pada proses tulis, laser memanasi titik pada disk yang hendak diproses. Kemudian setelah itu medan magnet dapat mengubah arah medan titik tersebut sementara temperaturnya ditingkatkan. Karena proses tersebut tidak mengubah disk secara fisik maka proses penulisan dapat dilakukan berulang-ulang. Pada proses baca arah medan magnet yang telah dipolarisasi tersebut akan membelokkan sinar laser dengan arah tertentu, sehingga terefleksikan dan dideteksi oleh foto sensor yang kemudian dikonversikan menjadi data digital.

CD-RW memiliki kecepatan yang bervariasi dan yang tercepat saat ini adalah 52x48x36. Hal ini dapat diterjemahkan sebagai kecepatan baca (read) 52 kali, kecepatan menulis (write) 48 kali, dan Kecepatan untuk Rewrite sebesar 36 kali.

5. CD-R (CompactDisc-Recordable)

CD-R adalah singkatan dari istilah bahasa inggrisCompactDisc-recordable merupakan jenis cakram padat yang dapat diisi dengan salah satu jenis media penyimpanan eksternal pada komputer. Secara fisik CD-R merupakan CD polikarbonat kosong berdiameter 120 mm sama seperti CD-ROM. Awalnya CD-R dilapisi emas sebagai media refleksinya. Permukaan reflektif pada lapisan emas tidak memiliki depresi atau lekukan-lekukan fisik seperti halnya pada lapisan aluminium kemudian  disempurnakan dengan cara  menambahkan lapisan pewarna diantara polikarbonat dan lapisan emas. CD-R dikenal juga dengan sebutan CD-WORM (Compact Disk Write Once Read Many).

6. Foto CD

Foto CD adalah sebuah system yang dirancang oleh Kodak untuk mendigitalkan dan menyimpan foto dalam CD. Diluncurkan pada 1992, cakram dirancang untuk menyimpan hampir 100 gambar berkualitas tinggi, scan sidik jari dan slide dengan menggunakan pengkodean eksklusif khusus. Foto CD disc didefinisikan dalam buku beige dan sesuai dengan CD-ROM XACD-I dan spesifikasi bridge juga. Dimaksudkan untuk bermain di CD-I pemain, foto pemutar CD (Apple Power CD misalnya), dan computer manapun dengan software yang sesuai.

7.   CD teks

CD-teks atau dikenal juga dengan Red Book Compact disc merupakan spesifikasi standar untuk CD audio. Hal ini memungkinkan untuk penyimpanan informasi tambahan (misalnya, nama album, nama lagu, dan artis) pada CD audio standar-compliant. Informasi ini disimpan baik dalam daerah lead-indari CD, dimana terdapat sekitar lima kilo byte ruang yang tersedia, ataupun disub-kanal untuk RW pada disk, yang dapat menyimpan sekitar 31 megabyte. Area terakhir ini tidak digunakan oleh red book.

8. DVD

DVD adalah sejenis cakram optic yang dapat digunakan  untuk menyimpan data termasuk film dengan kualitas video dan audio yang lebih baik dari kualitas VCD. DVD pada awalnya adalah singkatan dari digital video disc, namun beberapa  pihak ingin agar kepanjangannya diganti menjadi digital versatile disc (cakram serba guna digital) agar jelas bahwa format ini bukan hanya untuk video saja. Karena consensus antara kedua pihak ini tidak dicapai, sekarang nama resminya adalah DVD saja dan huruf-huruf tersebut secara resmi bukan singkatan dari apapun. Rata-rata kecepatan transfer data DVD adalah 1.321 MB/s dengan rata-rata burst transfer 12 MB/s.

9. DVD-RDL
           
DVD+RDL(DL singkatan dari double layer) juga disebut DVD+R9, adalah turunan dari format DVD+R, diciptakan oleh DVD+Rw alliance. Secara umum, DVD bisa dapat menyimpan data sebesar 4,7 Gigabit. Penggunaanya didemonstrasikan pertama  kali pada bulan Oktober 2003. DVD+RDL disc mempekerjakan dua lapisan recordabledye, yang masing-masing mampu menyimpan hampir 4,7Gb dari disk single-layer, hampir dua kali lipat kapasitas total disk 8,55 GB (7,99 GiB).



10. DVD-RW

DVD-RW adalah cakram optic yang dapat ditulis kembali dan memiliki kapasitas sama dengan DVD-R, biasanya 4,7 GB. Format ini dikembangkan oleh pioneer pada November 1999 dan telah disetujui oleh DVD forum. Keuntungan utama DVD-R adalah kemampuan menghapus dan menulis kembali sebuah cakram DVD-RW. Menurut pioneer cakram DVD-RW dapat ditulis sekitar 1000 kali, sebanding dengan standar CD-RW. Cakram DVD-RW biasanya digunakan untuk tujuan backup, kumpulan berkas atau home DVD video record. Keuntungan lain adalah bila ada kesalahan menulis, cakram masih dapat digunakan dengancara menghapus data yang salah tersebut.

11. DVD+RW

DVD+RW adalah format rewritable untuk DVD dan dapat menyimpan data sampai 4,7 GB. DVD+RW diciptakan oleh DVD+RW allince, sebuah konsorsium industry dan produsen disk drive. Dari sisi bisnis format DVD+RW yang diciptakan terutama untuk menghindari pembayaran royalty kepada DVD forum yang menciptakan format DVD-RW. Selain itu DVD+RW mendukung metode penulisan yang disebut lossless linking yang membuatnya cocok untuk akses acak (random access) dan meningkatkan kompatibilitas dengan pemutar DVD.

12. DVD-RAM

DVD-RAM (DVD-Random Access Memory) adalah disk khusus yang diperkenalkan pada tahun 1996 oleh forum DVD, yang dikhususkan untuk media DVD-RAM RW dan DVD write yang tepat. DVD-RAM digunakan dalam computer serta cam corder dan perekam video pribadi sejak tahun 1998.

13. Blue-ray disk

BLUE-RAY adalah sebuah format cakram optic yang digunakan untuk penyimpanan media digital termasuk video dengan kualitas tinggi. Namun Blue-ray diambil dari laser biru-ungu yang digunakan untuk membaca dan menulis cakram jenis ini, cakram blue-ray dapat menyimpan data yang lebih banyak dari format DVD yang lebih umum karena panjang gelombang laser biru ungu yang dipakai hanya 405 nm dimana lebih pendek dibandingkan dengan laser merah yaitu 650 nm yang dipakai pada DVD.

14. BD-R dan BD-RE(Blu-ray Disc Recordable)

BD-R dan BD-RE  adalah format Blue Ray Disk (BD) yang dapat direkam dengan perekam optik.  BD-R disc ditulis satu kali, sedangkan BD-RE bisa dihapus dan direkam berulang kali. Kapasitas disk adalah 25 GB (2,31 GiB) untuk cakram single layer dan 50 GB (46,61 GiB) untuk lapisan cakram ganda.

15. UniversalMediaDisk


Universal Media Disc (UMD) adalah sebuah media cakram optic yang dikembangkan oleh Sony untuk penggunaan Play Station Portable. UMD ini bisa menyimpan data sampai sebesar 1.8 GB (gigabyte), termasuk permainan video, film, music atau kombinasinya.


RAID

Apa itu RAID? Menurut Wikipedia, RAID (yang kepanjangannya adalah Redundant Array of Independent Disks), adalah sebuah teknologi di dalam penyimpanan data komputer yang digunakan untuk mengimplementasikan fitur toleransi kesalahan pada media penyimpanan komputer (utamanya adalah hard disk) dengan menggunakan cara redundansi (penumpukan) data, baik itu dengan menggunakan perangkat lunak, maupun unit perangkat keras RAID terpisah.

Dengan RAID, data yang disimpan akan dibagi/direplika ke beberapa hardisk  secara terpisah, guna untuk meningkatkan kehandalan data atau bisa juga untuk meningkatkkan performa I/O hardisk.

Kehandalan data bisa terpenuhi dengan RAID karena penyimpanan data tidak hanya diletakkan di beberapa disk. Jika ada disk yang rusak, data akan tetap aman, dan hardisk yang rusak dapat diganti dengan segera tanpa mempengaruhi eksistensi data.
Peningkatan performa I/O hardisk bisa terpenuhi karena ketika hardisk melakukan baca/tulis tidak dilakukan sendiri, tetapi dilakukan bersama-sama dengan hardisk lainnya. Istilahnya mereka secara gotong royong melakukan tugas. Sebagai contoh, RAID 0 dengan 2 hardisk, jika kecepatan per disk adalah 7200 rpm, maka dengan RAID 0, kecepatan berlipat ganda, 2 x 7200 rpm = 14400 rpm!

Sejarah RAID

Penggunaan istilah RAID pertama kali diperkenalkan oleh David A. Patterson, Garth A. Gibson dan Randy Katz dari University of California, Berkeley, Amerika Serikat pada tahun 1987. Tetapi walaupun mereka yang menggunakan istilah RAID pertama kali, tetapi hak paten RAID sejatinya dimiliki oleh Norman Ken Ouchi dari IBM, yang pada tahun 1978 mendapatkan paten nomor 092732 dengan judul “System for recovering data stored in failed memory unit”.

Level-Level Standar RAID

Pada dasarnya, level standar RAID ada 5. Tetapi seiring dengan perkembangan teknologi komputer, beberapa level-level baru bermunculan. Di artikel ini, saya akan membahas 7 level RAID yang sering digunakan.

RAID 0
Diagram RAID 0

RAID 0 (atau yang disebut juga dengan stripe set atau striped volume), data akan disimpan terpisah secara merata ke dua hardisk atau lebih, tanpa informasi parity untuk meningkatkan kecepatan. Parity data di RAID digunakan untuk memeriksa error hardisk & mendapatkan redundansi data. Jika ada hardisk yang rusak, secara otomatis RAID akan melakukan rekonstruksi data pada hardisk yang baru.
Nah, pada RAID 0, parity data tidak ada, sehingga jika ada hardisk yang rusak, maka secara otomatis data akan rusak. Tidak ada redundansi/kehandalan data di level RAID 0. Pada umumnya, RAID 0 digunakan untuk meningkatkan performa baca/tulis saja, atau untuk memperbesar kapasitas simpan, tanpa mementingkan redundansi data.

Seperti yang sudah saya sebutkan sebelumnya, dengan RAID 0, kecepatan I/O hardisk akan meningkat karena kinerja baca/tulis dikerjakan bersama-sama. Dengan 3 hardisk SATA 7200 rpm, anda akan memiliki performa setara 3 x 7200 rpm = 21600 rpm.
Dengan RAID 0, 3 x 1 TB hardisk = 3 TB hardisk!

RAID 1
 RAID 1
Dengan RAID 1, data di hardisk pertama akan di salin (mirroring) persis sama ke hardisk kedua. Jika anda lebih mementingkan performa baca & kehandalan data, ketimbang simpan, maka RAID 1 adalah pilihan yang pas.

Pada RAID 1, jika pada salah satu hardisk terjadi kerusakan, maka data akan tetap aman karena sudah tersalin di hardisk kedua. Jika hardisk yang rusak mendapatkan ganti, maka secara otomatis RAID 1 akan melakukan salinan/mirorring ke hardisk yang baru.

2 Hardisk yang diatur dengan RAID 1, total kapasitasnya hanya seperti memiliki 1 hardisk saja. Jadi semisal 2 x 1 TB hardisk dengan RAID 1, maka kapasitas simpan yang bisa dipakai adalah 1 TB saja.

Kecepatan baca/tulis pada RAID 1 cukup bagus, walau tidak setinggi performa pada RAID 0. Kekurangan RAID 1 hanyalah pada kapasitas simpan saja.

RAID 1 banyak digunakan pada operating system (OS) & transactional database.

RAID 5
 rsz_2raid_5
RAID 5 menggunakan metode block-level striping dengan data parity didistribusikan ke semua hardisk. RAID 5 cukup populer karena mampu menghadirkan redundansi data dengan biaya yang tidak terlalu besar.

RAID 5 memiliki toleransi kerusakan disk hanya satu saja, sama seperti RAID 1. Jadi, jika anda menggunakan 3 x 1TB hardisk, maka kapasitas simpan yang bisa digunakan adalah 2 TB saja, karena 1 TB lainnya digunakan untuk toleransi kerusakan.

RAID 5 memiliki performa baca dua kali lipat lebih cepat, tetapi tidak ada peningkatan pada performa tulis. RAID level ini dianjurkan untuk penyimpanan data, file server, atau untuk backup server.

RAID 6
 RAID 6
RAID 6 sejatinya hampir sama dengan RAID 5, yang membedakan cuma penambahan parity block. Jika pada RAID 5 toleransi kerusakan disk hanya satu, pada RAID 6 memiliki 2 disk. Dengan penambahan ekstra parity block, maka redundansi data lebih bagus ketimbang RAID 5.

Performa baca/tulis tidak ada beda dengan RAID 5. Level RAID 6 biasanya dianjurkan untuk solusi HA (High Availability), Mission Critical Apps, dan server yang membutuhkan kapasitas simpan yang besar).

RAID 10
 RAID 10
RAID 10 biasa juga disebut dengan RAID 1+0 atau RAID 1&0, mirip dengan RAID 0+1, cuma perbedaanya adalah penggunaan level RAIDnya dibalik.

RAID 10 sebenarnya bukan level standar RAID yang diciptakan untuk driver Linux MD. RAID 10 membutuhkan minimal 4 buah hardisk.

RAID 10 adalah kombinasi antara RAID 0 (data striping) dan RAID 1 (mirroring). Memiliki performa baca/tulis & redundansi data tertinggi (memiliki toleransi kerusakan hingga beberapa hardisk).

RAID 10 memiliki toleransi kerusakan 1 hardisk per mirror stripe.

RAID 10 biasanya banyak diimplementasikan pada database, web server & server aplikasi atau server-server yang membutuhkan performa hardisk tinggi.

RAID 50
 RAID_50
RAID 50 (atau juga disebut dengan RAID 5+0) merupakan kombinasi block-level striping dari RAID 0 dengan distribusi parity dari RAID 5. RAID 50 membutuhkan minimal 6 hardisk.

Jika salah satu hardisk dari masing-masing RAID 5 ada yang rusak, data akan tetap aman. Akan tetapi jika hardisk yang rusak tidak segera diganti, dan hardisk dari RAID 5 tersebut ada yang rusak lagi, maka semua data di RAID 50 akan rusak. Penggantian hardisk harus dilakukan agar data tetap terjaga redundansinya.

RAID 50 memilik toleransi kerusakan 1 hardisk per sub-array. Seperti halnya RAID 10, RAID 50 juga memiliki performa baca/tulis & redundansi data tinggi (memiliki toleransi kerusakan hingga beberapa hardisk).

RAID 50 biasanya banyak di implementasikan pada server database, server aplikasi, dan server penyimpanan file.

RAID 60
 RAID_60
RAID 60 (atau juga disebut dengan RAID 6+0) merupakan kombinasi block-level striping dari RAID 0 dengan distribusi parity dari RAID 6. RAID 60 membutuhkan minimal 8 hardisk.

RAID 50 dan RAID 60 tidak banyak perbedaan, yang membedakan hanya pada toleransi kerusakan hardisk. Jika pada RAID 50 toleransi kerusakannya 1 hardisk per sub-array, sedang di RAID 60 adalah 2 hardisk per sub-array.


RAID 60 biasanya banyak di implementasikan pada solusi High Availability, Mission Critical Apps,atau server yang membutuhkan kapasitas simpan besar.


CLOUD COMPUTING (komputasi awan)





Komputasi awan (cloud computing) adalah gabungan pemanfaatan teknologi komputer ('komputasi') dan pengembangan berbasis Internet ('awan'). Awan (cloud) adalah metafora dari internet, sebagaimana awan yang sering digambarkan di diagram jaringan komputer. Sebagaimana awan dalam diagram jaringan komputer tersebut, awan (cloud) dalam Cloud Computing juga merupakan abstraksi dari infrastruktur kompleks yang disembunyikannya. Ia adalah suatu metoda komputasi di mana kapabilitas terkait teknologi informasi disajikan sebagai suatu layanan (as a service), sehingga pengguna dapat mengaksesnya lewat Internet ("di dalam awan")  tanpa mengetahui apa yang ada didalamnya, ahli dengannya, atau memiliki kendali terhadap infrastruktur teknologi yang membantunya Menurut sebuah makalah tahun 2008 yang dipublikasi IEEE Internet Computing "Cloud Computing adalah suatu paradigma di mana informasi secara permanen tersimpan di server di internet dan tersimpan secara sementara di komputer pengguna (client) termasuk di dalamnya adalah desktop, komputer tablet, notebook, komputer tembok, handheld, sensor-sensor, monitor dan lain-lain”.
Komputasi awan adalah suatu konsep umum yang mencakup SaaS, Web 2.0, dan tren teknologi terbaru lain yang dikenal luas, dengan tema umum berupa ketergantungan terhadap Internet untuk memberikan kebutuhan komputasi pengguna. Sebagai contoh, Google Apps menyediakan aplikasi bisnis umum secara daring yang diakses melalui suatu penjelajah web dengan perangkat lunak dan data yang tersimpan di server. Komputasi awan saat ini merupakan trend teknologi terbaru, dan contoh bentuk pengembangan dari teknologi Cloud Computing ini adalah iCloud

·                     Sejarah Cloud Computing

Konsep awal Cloud Computing muncul pertama kali pada tahun 1960 oleh John McCarthy yang berkata “komputasi suatu hari nanti akan menjadi sebuah utilitas umum” ide dari cloud computing sendiri bermula dari kebutuhan untuk membagikan data untuk semua orang di seluruh dunia. Mohamed J.C.R Licklider, pencetus ide ini, menginginkan semua orang untuk dapat mengakses apa saja di mana saja. Dengan munculnya grid computing, cloud computing melalui internet menjadi realitas.
Cloud computing adalah sebuah mekanisme dimana kemampuan teknologi informasi disediakan bukan sebagai produk, melainkan sebagai layanan berbasis internet yang memungkinkan kita “meenyewa” sumber daya teknologi informasi (software, processing power, storage, dan lainnya) melalui internet dan memanfaatkan sesuai kebutuhan kita dan membayar yang digunakan oleh kita saja.
Cloud computing merupakan evolusi dari vrtualization,service oriented architecture, autonomic dan utily computing. Cara kerja dari cloud computing bersifat transparan, sehingga end-user tidak perlu pengetahuan, control akan, teknologi insfratuktur dari cloud computing untuk dapat menggunakannya dalam menyelesaikan tugas-tugas mereka .merka hanya perlu tahu bagaimana cara mengaksesnya.

·                     Keunggulan Cloud Computing

Uraian mengenai keuntungan (sisi potensial) yang didapat dalam penggunaan Cloud Computing. Namun, secara spesifik, merujuk kepada (Thia, 2008) keuntungan Cloud Computing antara lain: (1) Keuntungan bagi para pelaku bisnis adalah minimalisasi biaya investasi infrastruktur publik sehingga bisnis bisa lebih terfokus pada aspek fungsionalitasnya, (2) Bagi application developer, layanan PaaS memungkinkan pengembangan dan implementasi aplikasi dengan cepat sehingga meningkatkan produktivitas, (3) Bagi para praktisi yang bergerak di industri TI, hal ini berarti terbukanya pasar baru bagi industri jasa pengembangan teknologi informasi, (4) Bagi pebisnis di bidang infrastruktur, hal ini merupakan peluang yang besar karena dengan meningkatnya penggunaan layanan SaaS ini akan meningkatkan penggunaaan bandwidth internet, (5) Integrasi aplikasi dengan berbagai perangkat. Keunggulan lainnya adalah

1.  Tanpa Investasi Awal
Dengan cloud computing, kita dapat menggunakan sebuah layanan tanpa investasiyang signifikan di awal. Ini sangat penting bagi bisnis, terutama bisnis pemula(startup). Mungkin di awal bisnis, kita hanya perlu layanan CRM untuk 2 pengguna.Kemudian meningkat menjadi 10 pengguna.Tanpa model cloud computing, maka sejak awal kita sudah harus membeli hardware yang cukup untuk sekian tahun ke depan. Dengan cloud computing, kita cukupmembayar sesuai yang kita butuhkan.

2.  Mengubah CAPEX menjadi OPEX
Tanpa cloud computing, investasi hardware dan software harus dilakukan di awal,sehingga kita harus melakukan pengeluaran modal (Capital Expenditure, atau CAPEX). Sedangkan dengan cloud computing, kita dapat melakukan pengeluaranoperasional (Operational Expenditure, atau OPEX). Jadi, sama persis dengan biaya utilitas lainnya seperti listrik atau telepon ketika kita cukup membayar bulanan sesuai pemakaian. Hal ini akan sangat membantu perusahaan secara keuangan.

3.      Lentur dan Mudah Dikembangkan
Dengan memanfaatkan Cloud Computing, bisnis kita dapat memanfaatkan TI sesuaikebutuhan. Perhatikan Gambar di bawah untuk melihat beberapa skenario kebutuhan bisnis. Penggunaan TI secara bisnis biasanya tidak datar-datar saja. Dalam skenario “Predictable Bursting”, ada periode di mana penggunaan TImeningkat tajam. Contoh mudah adalah aplikasi Human Resource (HR) yang padaakhir bulan selalu meningkat penggunaannya karena mengelola gaji karyawan. Untuk skenario “Growing Fast”, bisnis meningkat dengan pesat sehingga kapasitas TI jugaharus mengikuti.Contoh skenario “Unpredictable Bursting” adalah ketika sebuah website berita mendapat pengunjung yang melonjak karena ada berita menarik. Skenario “On and Off” adalah penggunaan TI yang tidak berkelanjutan. Misalnya, sebuah layanan pelaporan pajak, yang hanya digunakan di waktu-waktu tertentu setiap tahun.
Dengan cloud computing, karena sifatnya yang lentur dan mudah dikembangkan(elastic and scalable), maka kapasitas dapat ditingkatkan pada saat dibutuhkan,dengan biaya penggunaan sesuai pemakaian.

4.      Fokus pada Bisnis, bukan TI
Dengan menggunakan Cloud Computing, kita dapat fokus pada bisnis utama perusahaan, dan bukan berkecimpung di dalam pengelolaan TI. Hal ini dapatdilakukan karena pengelolaan TI dilakukan oleh penyedia layanan, dan bukan olehkita sendiri. Misalnya, melakukan patching, security update, upgrade hardware,upgrade software, maintenance, dan lain-lain. Apabila kita memiliki tim TI, maka tim tersebut dapat fokus pada layanan TI yang spesifik untuk bisnis kita, sedangkan hal-hal umum sudah ditangani oleh penyedialayanan.

·                     Kekurangan Cloud Computing
Merujuk kepada (Robbins, 2009), resiko yang harus dihadapi user dalam penggunaan Cloud Computing ini antara lain: (1) service level, artinya kemungkinan service performance yang kurang konsisten dari provider. Inkonsistensi cloud provider ini meliputi, data protection dan data recovery, (2) privacy, yang berarti adanya resiko data user akan diakses oleh orang lain karena hosting dilakukan secara bersama-sama, (3) compliance, yang mengacu pada resiko adanya penyimpangan level compliance dari provider terhadap regulasi yang diterapkan oleh user, (4) data ownership mengacu pada resiko kehilangan kepemilikan data begitu data disimpan dalam cloud, (5) data mobility, yang mengacu pada kemungkinan share data antar cloud service dan cara memperoleh kembali data jika suatu saat user melakukan proses terminasi terhadap layanan cloud Computing. Beberapa pertimbangan lain yang menjadi resiko Cloud Computing adalah:

- Ketidakpastian kemampuan penegakan kebijakan keamanan pada provider
- Kurang memadainya pelatihan dan audit TI
- Patut dipertanyakan kendali akses istimewa pada situs provider
- Ketidakpastian kemampuan untuk memulihkan data
- Kedekatan data pelanggan lain sehingga kemungkinan tertukar
- Ketidakpastian kemampuan untuk mengaudit operator
- Ketidakpastian keberlanjutan keberadaan provider
- Ketidakpastian kepatuhan provider terhadap peraturan.

·                     Sistem Security Cloud Computing
Sebelum layanan Cloud computing menjadi begitu diinginkan, pelanggan harus merasa aman dengan informasi yang mereka transfer. Pada jurnal tersebut dijelaskan model pertama yang menjelaskan (model privasi) dengan mengimplementasikan secara ekonomi efisien metode sedangkan intrusi CP sistem deteksi memfokuskan upaya lebih terhadap pencegahan serangan. Ketika merancang sebuah skema keamanan untuk layanan Cloud computing, ada yang mendasari dilema dimana keamanan tidak bisa datang pada biaya aspek yang diinginkan seperti kecepatan data atau keterjangkauan. untuk mengatasi dilema ini, beberapa skema keamanan seperti sistem Reputasi Dirichlet memungkinkan pengguna untuk mengontrol tingkat keamanan yang besar.

Tabel Kelebihan dari strategi keamanan Cloud computing

Privacy                        Menyediakan enkripsi yang sangat kuat dari informasi
Model                          Pengguna dapat dengan mudah menyesuaikan parameter keamanan
mereka menyediakan metode yang terorganisir yang dapat
diimplementasikan dengan mudah
CP Intrusion                Melindungi terhadap berbagai skema intrusi
Detection                    Memberikan pencegahan yang sangat baik dari serangan
Dirichlet                      Menyediakan sistem canggih checks and balances
Reputation                  Menghindari kemampuan bagi penyerang untuk beradaptasi
                                    Menyediakan banyak kontrol pengguna
Anonymous                 Paling cocok untuk jarak kecil, sehingga pengguna baik tersembunyi dari
penyerang                   
Bonus Point                Hadiah Kredit memberikan insentif bagi pengguna untuk berpartisipasi
Network                      Menyediakan kebingungan penyerang
Slicing                         Menghemat bandwidth jaringan kecepatan data yang cepat mudah dicapai



Tabel Kekurangan dari strategi keamanan Cloud computing

Privacy                        Kesalahan dan bug yang sulit untuk menemukan dan memperbaiki
Model                          Layanan dapat menjadi macet dengan mengalihkan informasi
Sistem hanya preventif, sehingga tidak melindungi terhadap penyerang agresif
CP Intrusion                Harus diperbarui sering membingungkan penyerang
Detection                    Mei keliru mendeteksi dan menghentikan tidak mengganggu informasi
Dirichlet                      Mengandalkan strategi rumit yang sulit untuk menerapkan
Reputation                  Pengguna kepercayaan hasil kerentanan terhadap pelanggan menipu
Kinerja adalah semata-mata tergantung pada partisipasi pengguna
Anonymous                 Data kecepatan secara drastis dikurangi
Bonus Point                Memberikan perlindungan intrusi kecil
Network                      Karena struktur relay, perlindungan tidak dapat diandalkan
Slicing                         Dapat menjadi mahal jika diimplementasikan dalam jaringan yang besar


  
·                     Contoh Penerapan Cloud Computing


1.      Gmail dan Yahoo mail
sebenarnya kita sudah lama menggunakan teknologi cloud computing, hanya saja kita tidak sadar tentang teknologi tersebut. salah satu contohnya adalah layanan email seperti Gmail dan Yahoo Mail yang sering kita gunakan. 

Cloud computing adalah teknologi yang menggunakan internet dan server pusat yang jauh untuk menjaga/mengelola data dan aplikasi. Cloud computing membantu konsumen dan pebisnis untuk menggunakan aplikasi tanpa melakukan instalasi, mengakses file pribadi mereka di komputer manapun dengan akses internet. Teknologi ini memungkinkan efisiensi lebih dengan memusatkan penyimpanan, memory, pemrosesan, dan bandwith.
Contoh cloud computing adalah Yahoo email atau Gmail. Anda tidak perlu software atau server untuk menggunakannya. Semua konsumen hanya perlu koneksi internet dan mereka dapat mulai mengirimkan email. Software manajemen email dan server semuanya ada di cloud (internet) dan secara total dikelola oleh provider seperti Yahoo, Google, etc. Konsumen hanya perlu menggunakan software itu sendiri dan menikmati manfaatnya.

Pada kali in saya akan menjelaskan salah satu contoh cloud computing yaitu gmail. Pertama kita masuk ke situs www.gmail.com. Gambar saat kita masuk kesitusnya dapat kita liat seperti dibawah ini:
 Image
Apabila kita telah memiliki akun pada gmail, kita tinggal memasukkan nama pengguna dan sandi dan klik masuk. Namun apabila kita belum memiliki akun gmail, kita tinggal mengklik buat akun. Gambar saat akan buat akun dapat dilihat dibawah ini:
Image

 Tampilan apabila kita telah sukses masuk dapat dilihat pada gambar dibawah ini:
Image

Beginilah tampilan alamat gmail kita bila sudah selesai:
 Image
Apabila kita akan mengirim email, kita tinggal mengklik tulis email yang terdapat pada bagian kiri atas. Kemudian pada bagian kepada, kita tinggal memasukkan alamat email yang kita tuju, dan terdapat judul subjek yaitu maksud kita mengirim email. Kemudian pada bagian tulisan, kita akan menulis apa yang akan kita kirimkan. Dan apabila sudah selesai, kita tinggal memilih kirim. Gambar selengkapnya dapat dilihat dibawah ini:
Image

Kita pun bisa mengirim lampiran email dalam bentuk apa pun, baik dalam bentuk word, excel, powerpoint, dll. Kapasitas email yang terdapat di gmail termasuk yang paling besar yaitu sekitar 7589 MB.
Pada gmail, kita juga bisa menelpon dan bersms dengan seseorang, tanpa menggunakan pulsa. Kita cukup memasukkan no handphone yang akan kita telpon/sms. Gambarnya dapat dilihat dibawah ini:
Image
Image

Senin, 06 Oktober 2014

EVOLUSI KOMPUTER DARI GENERASI PERTAMA HINGGA SEKARANG

Sejarah Perkembangan Komputer Sebelum tahun 1940 Sejak dahulu kala, proses pengolahan data telah dilakukan oleh manusia. Manusia juga menemukan alat-alat mekanik dan elektronik untuk membantu manusia dalam penghitungan dan pengolahan data supaya dapat mendapatkan hasil lebih cepat. Komputer yang kita temui saat ini adalah suatu evolusi panjang dari penemuan penemuan manusia sejak dahulu kala berupa alat mekanik mahupun elektronik.
Saat ini, komputer dan peranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan yang lebih dari sekedar perhitungan matematik biasa. Di antaranya adalah sistem komputer di pasar raya yang mampu membaca kod barang belanjaan, pusat telefon yang menangani jutaan panggilan dan komunikasi, serta jaringan komputer dan internet yang menghubungkan berbagai tempat di dunia. Komputer ada 4 golongan yaitu:
1.  Peralatan manual: Iaitu peralatan pengolahan data yang sangat sederhana, dan faktor terpenting dalam pemakaian alat adalah menggunakan tenaga tangan manusia
2. Peralatan Mekanik: Iaitu peralatan yang sudah berbentuk mekanik yang digerakkan dengan tangan secara manual
3. Peralatan Mekanik Elektronik: Peralatan mekanik yang digerakkan oleh secara otomatis oleh motor elektronik
4. Peralatan Elektronik: Peralatan yang bekerjanya secara elektronik penuh 

Beberapa peralatan yang telah digunakan sebagai alat hitung sebelum ditemukannya komputer :
a. Abacus

Muncul sekitar 5000 tahun yang lalu di Asia kecil dan masih digunakan di beberapa tempat hingga saat ini, dapat dianggap sebagai awal mula mesin komputasi. Alat ini memungkinkan penggunanya untuk melakukan perhitungan menggunakan biji bijian geser yang diatur pada sebuh rak. Para pedagang di masa itu menggunakan abacus untuk menghitung transaksi perdagangan. Seiring dengan munculnya pensil dan kertas, terutama di Eropa, Abacus kehilangan popularitasnya.
b. Kalkulator roda numerik ( numerical wheel calculator )
Setelah hampir 12 abad, muncul penemuan lain dalam hal mesin komputasi. Pada tahun 1642, Blaise Pascal (1623-1662), yang pada waktu itu berumur 18 tahun, menemukan apa yang ia sebut sebagai kalkulator roda numerik (numerical wheel calculator) untuk membantu ayahnya melakukan perhitungan pajak.
c. Kalkulator roda numerik 2 

Tahun 1694 seorang matematikawan dan filsuf Jerman, Gottfred Wilhem von Leibniz (1646-1716) memperbaiki Pascaline dengan membuat mesin yang dapat mengalikan. Sama seperti pendahulunya, alat mekanik ini bekerja dengan menggunakan roda-roda gerigi. Dengan mempelajari catatan dan gambar-gambar yang dibuat oleh Pascal, Leibniz dapat menyempurnakan alatnya.
d. Kalkulator Mekanik 

Charles Xavier Thomas de Colmar menemukan mesin yang dapat melakukan empat fungsi aritmatik dasar. Kalkulator mekanik Colmar, arithometer, mempresentasikan pendekatan yang lebih praktis dalam kalkulasi karena alat tersebut dapat melakukan penjumlahan, pengurangan, perkalian, dan pembagian. Dengan kemampuannya, arithometer banyak dipergunakan hingga masa Perang Dunia I. Bersama-sama dengan Pascal dan Leibniz, Colmar membantu membangun era komputasi mekanikal.

Saat ini, komputer sudah semakin canggih. Tetapi, sebelumnya komputer tidak sekecil, secanggih, sekeren dan seringan sekarang. Dalam sejarah komputer, ada 5 generasi dalam sejarah komputer.
1.   Generasi Pertama (1944-1959)

 Tabung hampa udara sebagai penguat sinyal, merupakan ciri khas komputer generasi pertama. Pada awalnya, tabung hampa udara (vacum-tube) digunakan sebagai komponen penguat sinyal. Bahan bakunya terdiri dari kaca, sehingga banyak memiliki kelemahan, seperti: mudah pecah, dan mudah menyalurkan panas. Panas ini perlu dinetralisir oleh komponen lain yang berfungsi sebagai pendingin. Dan dengan adanya komponen tambahan, akhirnya komputer yang ada menjadi besar, berat dan mahal. Pada tahun 1946, komputer elektronik didunia yang pertama yakni ENIAC sesai dibuat. Pada komputer tersebut terdapat 18.800 tabung hampa udara dan berbobot 30 ton. begitu besar ukurannya, sampai-sampai memerlukan suatu ruangan kelas tersendiri. Pada gambar nampak komputer ENIAC, yang merupakan komputer elektronik pertama didunia yang mempunyai bobot seberat 30 ton, panjang 30 M dan tinggi 2.4 M dan membutuhkan daya listrik 174 kilowatts.
2.   Generasi Kedua (1960-1964)

Transistor merupakan ciri khas komputer generasi kedua. Bahan bakunya terdiri atas tiga lapis, yaitu: “basic”, “collector” dan “emmiter”. Transistor merupakan singkatan dari Transfer Resistor, yang berarti dengan mempengaruhi daya tahan antara dua dari tiga lapisan, maka daya (resistor) yang ada pada lapisan berikutnya dapat pula dipengaruhi. Dengan demikian, fungsi transistor adalah sebagai penguat sinyal. Sebagai komponen padat, tansistor mempunyai banyak keunggulan seperti misalnya: tidak mudah pecah, tidak menyalurkan panas. dan dengan demikian, komputer yang ada menjadi lebih kecil dan lebih murah. Pada tahun 1960-an, IBM memperkenalkan komputer komersial yang memanfaatkan transistor dan digunakan secara luas mulai beredar dipasaran. Komputer IBM- 7090 buatan Amerika Serikat merupakan salah satu komputer komersial yang memanfaatkan transistor. Komputer ini dirancang untuk menyelesaikan segala macam pekerjaan baik yang bersifat ilmiah ataupun komersial. Karena kecepatan dan kemampuan yang dimilikinya, menyebabkan IBM 7090 menjadi sangat popular. Komputer generasi kedua lainnya adalah: IBM Serie 1400, NCR Serie 304, MARK IV dan Honeywell Model 800.
3. Generasi Ketiga (1964-1975)

Konsep semakin kecil dan semakin murah dari transistor, akhirnya memacu orang untuk terus melakukan pelbagai penelitian. Ribuan transistor akhirnya berhasil digabung dalam satu bentuk yang sangat kecil. Secuil silicium yag mempunyai ukuran beberapa milimeter berhasil diciptakan, dan inilah yang disebut sebagai Integrated Circuit atau IC-Chip yang merupakan ciri khas komputer generasi ketiga.
Cincin magnetic tersebut dapat di-magnetisasi secara satu arah ataupun berlawanan, dan akhirnya men-sinyalkan kondisi “ON” ataupun “OFF” yang kemudian diterjemahkan menjadi konsep 0 dan 1 dalam system bilangan biner yang sangat dibutuhkan oleh komputer. Pada setiap bidang memory terdapat 924cincin magnetic yang masing-masing mewakili satu bit informasi. Jutaan bit informasi saat ini berada didalam satu chip tunggal dengan bentuk yang sangat kecil.
Komputer yang digunakan untuk otomatisasi pertama dikenalkan pada tahun 1968 oleh PDC 808, yang memiliki 4 KB (kilo-Byte) memory dan 8 bit untuk core memory. Dapat digunakan untuk multiprogram. Contoh komputer generasi ketiga adalah Apple II, PC, dan NEC PC.
4. Generasi Keempat (1975-Sekarang)

Komputer generasi keempat masih menggunakan IC/chip untuk pengolahan dan penyimpanan data. Komputer generasi ini lebih maju karena di dalamnya terdapat beratus ribu komponen transistor. Proses pembuatan IC komputer generasi ini dinamakan pengintegrasian dalam skala yang sangat besar. Pengolahan data dapat dilakukan dengan lebih cepat atau dalam waktu yang singkat. Media penyimpanan komputer generasi ini lebih besar dibanding generasi sebelumnya. Komputer generasi ini sering disebut komputer mikro. Contohnya adalah PC (Personal Computer). Teknologi IC komputer generasi ini yang membedakan antara komputer mikro dan komputer mini serta main frame. Beberapa teknologi IC pada generasi ini adalah Prosesor 6086, 80286, 80386, 80486, Pentium I, Celeron, Pentium II, Pentium III, Pentium IV, Dual Core, dan Core to Duo. Generasi ini juga mewujudkan satu kelas komputer yang disebut komputer super.
5. Generasi Kelima (Sekarang – Masa depan)

Generasi kelima dalam sejarah evolusi komputer merupakan komputer impian masa depan. Ia diperkirakan mempunyai lebih banyak unit pemprosesan yang berfungsi bersamaan untuk menyelesaikan lebih daripada satu tugas dalam satu masa.
Komputer ini juga mempunyai ingatan yang amat besar sehingga memungkinkan penyelesaian lebih dari satu tugas dalam waktu bersamaan. Unit pemprosesan pusat juga dapat berfungsi sebagai otak manusia. Komputer ini juga mempunyai kepandaian tersendiri, merespon keadaan sekeliling melalui penglihatan yang bijak dalam mengambil sesuatu keputusan bebas dari pemikiran manusia yang disebut sebagai artificial intelligence.
Banyak kemajuan di bidang desain komputer dan teknologi semakin memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model von Neumann. Model von Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi.
Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia. Kita tunggu informasi mana yang lebih valid dan membuahkan hasil.

Sumber :